

THE RAILWAY SYSTEM MUST REINVENT ITSELF TO COPE WITH COMING UPHEAVALS IN MOBILITY

INSPIRED BY STUNNING NEW DEVELOPMENTS IN MOBILITY...

WE'RE RETHINKING RAIL THROUGH INNOVATION: MEET SNCF'S TECH4RAIL PROGRAMME

ROLL OUT NEW TECHNOLOGIES

 Harness breakthroughs in emerging technologies

MOVE FASTER

 Secure new technologies through partnerships with other industries, academics, IRTs and start-ups

CREATE VALUE

- Give SNCF's operational performance a significant boost
- Position SNCF as a pacesetter in rail systems and mobility
- Break free of the past to consider new businesses

DARE TO REINVENT OURSELVES

- Get our engineers on board: motivate and stimulate
- Use technology to surprise

INTRODUCING TECH4RAIL:

SEIZING AND DEVELOPING NEW TECHNOLOGIES STARTS HERE

Artificial intelligence

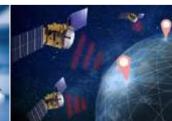
Energy storage

3D printing

Robotics

Automation

Lighter materials


Man-machine interfaces

Geolocalization

DIGITIZE & AUTOMATE

TECH4RAIL HAS 3 MAIN PRIORITIES

(RE)INVENT THE RAIL SYSTEM OF THE FUTURE Work with European partners to **validate new technological building blocks**: Al-assisted operations; budget-conscious, digitized infrastructure; advanced geolocalization of trains

CO-DEVELOP AN AUTOMATED TRAIN

The train of the future will be **more connected, more automated, and more eco-friendly**—capable of delivering more traffic, more flexibility, more on-time arrivals and more energy-efficient operation.

INVENT TOMORROW'S MOBILITIES Build on our existing know-how (passenger experience, complex systems operation, safety and more) to position **SNCF** as a champion of new mobilities

OUR GLOBAL VISION

At SNCF, we're developing our vision of the railway system of the future as a means of identifying main priorities for cooperation with stakeholders across Europe.

CHALLENGES AND GOALS

BY 2030-2040, OFFER OUR CUSTOMERS A COMPETITIVE, AGILE, SUSTAINABLE RAILWAY SYSTEM THAT IS FULLY INTEGRATED INTO TOMORROW'S MOBILITIES

A customercentric system

CHALLENGES

A competitive system: high performance & cost-effective

An agile and forward-looking system

A sustainable and responsible system

A system fully integrated into the mobility of the future

GOALS

Deliver reliable, safe, easy-toaccess, seamless service to a connected, demanding customereceiving r base real-time information. Reduce costs, invest in key areas, and maximize use of the rail network and rolling stock. Simplify and standardize the system, incorporate component migration into the mix to facilitate upgrades and reduce the time needed to integrate new technologies.

Deliver the public service that is our mission, to the highest safety standards and optimizing use of resources, while limiting our carbon footprint and negative externalities Include rail in a global door-to-door mobility offering, and turn stations into new hubs offering integrated services and all travel modes.

TRANSFORMATION LEVERS

FIVE TRANSFORMATION LEVERS DEFINE THE TECHNOLOGY PATH TO OUR GOAL

	SIMPLIFIED INFRASTRUCTURES						
	DEMATERIALIZED SIGNALLING; ETCS AND BEYOND	RAIN LOCATIONS	INTERCONNECTED TELECOM NETWORKS			SIMPLIFICATION OF THE NETWORK AND ITS OPERATING RULES	
⊃ \$	AUTOMATED OPERATIONS AND INTEGRATED MANAGEMENT OF FLOWS						
	INTELLIGENT TRAFFIC MANAGEMENT SYSTEM (TMS)		AUTOMATED TRAIN (ATO)		TMS + ATO INTEGRATION, COMBINED WITH ETCS		,
4	ENERGY PERFORMANCE						
	ELECTRICAL STORAGE	ENERGY	MANAGEMENT	NEW ENERGIES & N		EW MODELS	
X	ASSETS TAILORED TO USE						
	REINVENT MONITORING AND MAINTENANCE		R DESIGN AND ARDIZATION	DIG	ITAL TWIN	REDESIGNED ROLLING STOCK	
	ENHANCED CUSTOMER EXPERIENCE AND MULTIMODAL INTERFACES						
	CUSTOMER SERVICE AND I TRAFFIC MANAGEMENT I		NEW PASSENGER HUBS		INTELLIGENT RAILWAY CROSSINGS		

O

Dematerialized signalling: ETCS and beyond

Accelerate deployment of ETCS L2 / L2+ / L3 in economically sustainable conditions and explore additional gains in capacity through more widespread dematerialization

Technological building blocks: ETCS, IT, virtual coupling, computing power

Train location

Develop train location and integrity solutions: safe, reliable, accurate, autonomous and real time

Technological building blocks: GNSS, inertial units, hybrid sensors

2 essential blocks

Interconnected telecom networks

Integrate a set of reliable, robust and powerful interconnected telecommunication networks so that all connected systems and objects can communicate

Technological building blocks: IP, 4G/5G, V2X/C-V2X protocols

Simplification of the network and its operating rules

Adopt simpler network and operating rules across the system, in particular at railway junctions

 $\supset \zeta$

AUTOMATED OPERATIONS AND INTEGRATED MANAGEMENT OF FLOWS

 Develop full assessment of situations in real time, and provide predictive decisionsupport tools for flow management—both trains and passengers

Technological building blocks:

Big Data processing, Artificial Intelligence, cognitive tools

Automated train operation (ATO)

Create prototypes, then move up to full-scale production of automation blocks from GoA2 to GoA4 to increase capacity (assuming constant infrastructure), security/safety, flexibility and on-time arrivals.

Technological building blocks: detection, artificial intelligence, localization, safety demonstration

ATO + TMS integration, combined with ETCS

Integrate those 3 key items (ATO+TMS+ETCS) to reach the full potential of each

Technological building blocks: distributed / centralized intelligence, computing, telecommunications

PERFORMANCE LEAPS AHEAD THANKS TO THE AUTOMATED TRAIN

FIRST STEPS & ACHIEVEMENTS IN ALL BUSINESS AREAS

TGV 2020 COMMERCIAL SERVICE

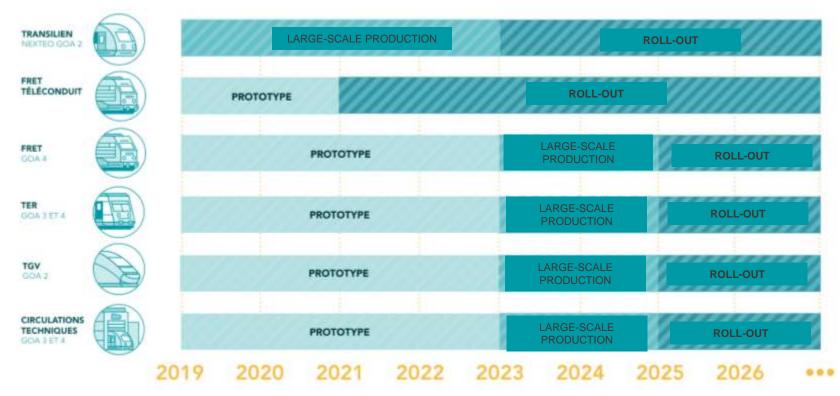
PROTOTYPE—FREIGHT

LONG-DISTANCE CONVOY

REMOTE DRIVER

PROTOTYPE—
PASSENGER SERVICE

GOA1 GOA2 GOA3 GOA4



TECHNICAL ADVANCES (all activities)

GOA1 GOA2 GOA3 GOA4

KEY DATES AHEAD—AUTOMATED TRAIN

Electrical storage

Deploy power storage on and off trains to improve operational reliability at sustainable cost; reduce energy consumption; reduce CO2 emissions; and improve comfort

Technological building blocks: hybridization, high power batteries

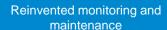
Energy management

Provide flexibility to the rail electrical system to optimize energy costs—peak shaving and load levelling—and facilitate integration of power production systems

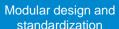
Technological building blocks: smart grids, storage, digital tools

New energy sources & models

Stimulate the emergence of
"green" hydrogen solutions to
decarbonize non-electrified
lines and, from a system
perspective, open up new uses,
particularly in other mobility
systems


Technological building blocks: H2 production, safe integration issues

4TH LEVER


ASSETS TAILORED TO USE

Automate real-time monitoring of asset condition for better responsiveness— specifically through predictive maintenance—and to improve safety

Technological building blocks:

IoT, big data, predictive models, new security methods

Make standardized, modular design the rule to accelerate technology migration and facilitate matching of supply and demand

Technological building blocks:

IMA (Integrated Modular Avionics)

Digitize design and production processes and make greater use of simulation and virtual testing

Technological building blocks:

digitalization, simulation

Redesigned rolling stock

Rethink rolling-stock architecture, performance and life cycle

Technological building blocks:

miniaturization, eco-design, acceleration/braking systems

Customer service and multimodal traffic management platform

Develop integrated multimodal traffic and service management platforms to better adjust to demand

Technological building blocks:

data processing, modelling, blockchain

New passenger hubs

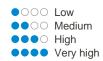
Redesign passenger hubs to make travel easier and more seamless for all passengers, by integrating multimodality and new emerging autonomous modes of transport

Technological building blocks:

flow simulation

Intelligent railroad crossings

Transform level crossings into intelligent junctions that are "connected" to vehicles on the road and to trains, for improved safety

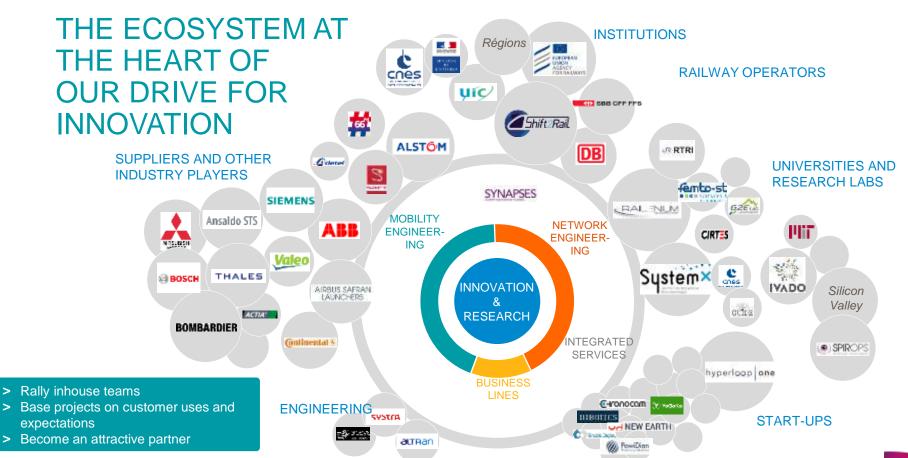

Technological building blocks:

detection, IoT, 5G, V2X / C-V2X, location

TRANSFORMATION LEVERS

IMPACTOF THESE FIVE LEVERS ON MAIN CHALLENGES

CHALLENGES



KEYS TO SUCCESS

MUST BE DEPLOYED THROUGHOUT THE TRANSFORMATION PROCESS TO ENSURE HIGH PERFORMANCE

THANK YOU.

CONTACT:

INNOVATION & RECHERCHE - PLATEAU TECH4RAIL

1/3 AVE FRANCOIS MITTERRAND

93210 LA PLAINE SAINT DENIS

Tech4rail.sncf@sncf.fr

LEARN MORE ABOUT US AT:

www.sncf.com

